Wyeth Nutrition SCIENCE CENTER

Brain & Cognitive Development: A Focus on Myelination and Executive Functions

Barry O'Neill PhD

9th Annual Wyeth Nutrition Science Center Global Summit

March 2020

Presentation Outline

- Brain Development in Early Life
- Brain Structure & Function: Myelination and Cognition
- Executive Functions building core cognitive capabilities for life

Brain Development – early life

Adapted from Silbereis et al., 2016

Brain Development – early life

 Children's brains are significantly different from the adult brain as the organization and properties of brain structures change with age¹

 The early brain develops with a level of plasticity; this facilitates both adaptive changes, representing potential **opportunity**, and malformations, reflecting potential vulnerability²

¹Vân Phan et al., 2018, ²Gao et al 2017

Wyeth Nutrition

Gene expression (nature) Environmental factors (nurture)

 \rightarrow Molecular cues that guide development and are dependent on environment and experiences of the developing child

Influencing Factors

Environmental factors

- Socioeconomic status (SES)
- Social mobility
- Nutrition
- Social interactions
- Stress
- Ubranisation
- Pollution

Influencing Factors

Environmental factors

- Socioeconomic status (SES)
- Social mobility
- Nutrition
- Social interactions
- Stress
- Ubranisation
- Pollution

Source: worldbank.org/en/publication/WDR 2018, using data from Nelson and others (2017). Data at http://bit.do/WDR2018-Fig_S2-1.

Myelination

Myelination is a key part of neurodevelopment^{1,2}

- Wrapping of nerve fibers (axons) with lipid-rich sheath
- Ensures fast, efficient & synchronized communication between cells and networks
- Protects the neuron
- Matures alongside cognitive and behavioural development

¹Silberis 2016; ²Deoni et al 2011

Myelination & Cognition

Clinical studies demonstrate the link between myelination and cognition, including:

- general cognitive ability¹
- language² & reading³
- working memory⁴
- processing speed⁵
- sensory reactivity⁶

¹Schmithorst et al., 2005; Deoni et al., 2015; ²Büchel et al., 2004; O'Muircheartaigh et al., 2013; ³Nagy et al., 2004; Beaulieu et al., 2005; ⁴Nagy et al., 2004; Short et al., 2013; ⁵Turken et al., 2008; Bartzokis et al., 2010; Lu et al., 2013; ⁶Weinstein et al., 2014

Myelination & Cognition¹

Objective

To examine the longitudinal relationship of maturing brain myelination to variability in cognitive skills.

Population

N = 187 children with repeated MRI (Myelin Water Fraction) and cognitive assessments (MSEL) between 2 mo and 6 yrs of age

Results

Marked age-related variability in repeated cognitive measures that was variably related to on-going changes in myelination.

¹Deoni et al 2019

Brain & Cognitive Development

Changes in neurobiology parallel behavioral maturation → milestones¹

Continuous learning process of gaining:

- Sensory
- Motor
- Cognitive
- Langage
- Social &
- Emotional abilities

¹Silbereis et al., 2016

What are Executive Functions (EF)?

- EFs are a family of key mental processes that organize, manage information and control behavior¹
- 3 core EF:

<u>Inhibition</u> (inhibitory control, including self control (behavioural inhibition and interference control (selective attention and cognitive inhibition)

Working memory

Cognitive flexibility (also called set shifting and mental flexibility)

¹Diamond A. 2013

What are Executive Functions (EF)?

3 core Executive Functions^{1,2}

- Planning and organisation
- Flexible thinking
- Emotions & behavior controls
- Multi-tasking
- Solving complex problems
- Learning rules
- Making decisions
- Motivation
- Concentrating
- Self-awareness

¹ Diamond A. (2013); ² Collins & Koechlin (2012)

Wyeth Nutrition

Development of EFs – related to other cognitive skills

- Children are not born with EFs skills, but with the ability to develop them¹
- EF draw on other, earlier developing cognitive skills
- Generally cognitive development proceeds from sensory, motor and early language activity to social interaction and finally higher order cognition and executive functions²

¹ <u>https://developingchild.harvard.edu/science/key-concepts/executive-function;</u>²Dajani et al 2015

Development of EFs – related to brain connectivity

- EF are orchestrated by neural activity within the prefrontal cortex (PFC)¹ that is connected with other brain regions
- Those networks of different brain regions continuously process and share information with each other, either via anatomical links (structural connectivity) or via simultaneous activation of spatially separate regions (functional connectivity)²⁻⁴ and they develop from local to wide-spread networks

¹Best & Miller (2010), ²Huang & Ding (2016), ³van den Heuvel & Hulshoff (2010), ⁴Sporns O. (2013).

EFs as core cognitive capabilities for life

- EF are skills for life and learning¹
- EFs are skills essential for success in school and in life as well as cognitive, social, and psychological development²
 - \rightarrow Mental & physical health
 - \rightarrow Quality of life
 - → School readiness
 - \rightarrow Job success
 - → Marital harmony
 - → Public safety
- They can be more predictive than IQ or socioeconomic status³

¹<u>www.developingchild.harvard.edu/resources/;</u> ²Diamond A (2013), ³Diamond A (2016).

Factors influencing the development of EFs¹⁻⁴

- Neural maturation
- Schooling & education
- Language
- Social environment & connections
- Positive relationships with adults
- Physical & mental activity
- Practice
- Creative play

- Factors disrupting brain architecture
- Negative stress
- Neglect & violence

¹ https://developingchild.harvard.edu/science/key-concepts/executive-function/; ² Matsuda et al. 2017; ³ Baum et al. 2017; ⁴Best & Miller (2010)

Wyeth Nutrition SCIENCE CENTER

Wrap up & key messages

Key messages

- The first years of life are a rapid & dynamic period for brain maturation. Most brain processes during that period are primarily focused on connecting the brain, e.g. myelination
- The resulting connectivity is central to establishing cognitive functions, such as Executive Function (EF). EF development and maturation is fundamental to success in school, life as well as health & well-being.
- Many factors influence brain growth and myelination; early life nutrition is an important and modifiable factor that can shape myelination and, consequently, cognitive development including executive functions

Wyeth Nutrition SCIENCE CENTER

Wyeth Nutrition

Brain & Cognitive Development: The Role of Polar Lipids

Barry O'Neill PhD

9th Annual Wyeth Nutrition Science Center Global Summit

March 2020

Ŕ

A B C D